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I N D U C T I O N  HEATING OF FLUIDS 

M. L. Konovalov and V. V. Beloborodov UDC 621.365.5 

We consider problems of mathematical simulation of thermal processes during induction heating of fluids 

under conditions of conjugate heat exchange between the fluid flow and the channel walls of the induction 

heater, within which internal heat sources operate due to an induced electric current. 

During heating of fluids in an induction flow-through heater, heat exchange occurs between the fluid flow 

and a solid body (the walls of the heater) with heat sources distributed in it. This is responsible for the variability 

of the surface temperature of the heater walls. This kind of problem has not as yet been studied adequately both 

theoretically and experimentally. Originally in works devoted to this problem the surface temperature was 

prescribed as a certain function of the coordinates. But this temperature distribution on the surface cannot be 

assigned a priori. It should be obtained as a result of simultaneous solution of equations for the fluid flow and the 

solid body, i.e., a conjugate problem of heat exchange [1 1. Thus, mutual thermal effects of the solid body and the 

fluid, their thermophysical properties, and the distribution of internal heat sources are taken into account. 

Solutions of conjugate problems of heat exchange for bodies of the simplest geometric form, predominantly 

for a laminar fluid flow, are given in [1 ]. It should be noted that even in this cases the form of the problems and 

their solutions is extremely complicated. 

A criterion that would allow one to decide whether or not the problem belongs to the category of conjugate 

problems is the Brun number (the conjugation criterion): 

,lfb 
Br = ~ prmRe n . (1) 

The Brun number characterizes the relationship between the temperature drops over the wall thickness and 

in the boundary layer of the fluid flow: 

,~fb 
AO = Ae ~ PrmP, e n . (2) 

In this case it is assumed that if the Brun number is small enough, then the temperature drop over the wall thickness 

can be neglected, and the problem can be solved by a traditional method with account for boundary conditions on 

the external side of the wall. The critical (minimum) value of the Brun number (Brmin) can be determined from 

the condition 

~0 = 0 . 0 5 .  (3) 

By their thermophysical properties fluids can be divided into the following groups: 

1. Elastic fluids (gases, vapors). They are distinguished by a low thermal conductivity coefficient 

(0.02-0.05 W/(m. K)) and a comparatively low Prandtl number ~Pr -< t), depending little on temperature 12-4 I. 

2. Dropping liquids that are characterized by higher values of the thermal conductivity coefficient C0.15-0.7 

W/(m.  K)) and high values of the Prandtl number ~ 10-  104), strongly depending on temperature 12-4 I. 

3. Liquid metals characterized by small values of the Prandtl number but high values of the thermal 

conductivity coefficient (Pr = (0 .8-5) .  10 -2 , ),f= 15-20 W/(m.K))  14 I. 

Krasnoyarsk Commcrcial Institute, Krasnoyarsk, Russia. Translatcd from lnzhenerno-Fizicheskii Zhurnal, 

Vol. 69, No. 2, pp. 272-278, March-April, 1996. Original article submitted Novcmbcr 26, 1992. 

218 1062-0125/96/6902-0218515.00 01996 Plcnum Publishing Corporation 



When determining the Brun number, it is necessary, apart from the thermophysicai properties of the fluid, 

to assign the Reynolds number, which determines the regime of fluid motion, the thermal conductivity coefficient 

of the wall material, and the geometric ratio b / l .  

If we take stainless steel 15 ] bls= 15-20 W/(m. K)), i.e., an electrically conducting material used in contact 

with corrosive fluids in chemical technology and with food media, as the material of the wall and the geometric 

ratio b / l  to be equal to the mean ratio between the wall thickness and diameter for standard tubes ( b / l  = 0.17, 

[6 ]), then the ratios of the Brun number in the turbulent regime of flow (.4 = 0.021; m = 0.43; n = 0.8; Re = 11000) 

to its minimum value for the groups of fluids enumerated above are: 

1) Br/Brmin = 0.2 + 1.5, 

2) Br/Brmi n = 6 + 115, 

3) Br/Brmi n = 10 + 90. 

In a laminar flow regime (A = 0.66; m = 0.33; n = 0.5; Re = 1000) the ratio Br/Brmin is much larger than 

unit) and approaches five only in individual cases for substances of the second and third group. 

Thus, heat exchange problems for substances of the second and third group (dropping liquids and liquid 

metals) should be considered as conjugate problems, at least for a turbulent flow regime. For substances of the 

second group (dropping liquids) this primarily refers to high-viscosity fluids distinguished by the highest values of 

the Prandtl number (oils, glycerin at low temperatures). 

Considering problems of heat exchange in induction heating of substances of the third group (liquid 

metals), in addition to what has been said, it is necessary to take into account the ability of these substances to 

conduct an electric current, resulting in the appearance of heat sources directly in the fluid flow and body (electric) 

forces acting in the fluid. 

The conjugation criterion introduced (the Brun number) characterizes the conditions of heat exchange in 

the direction perpendicular to the surface of the solid body interacting with the fluid. So, if the Brun number is 

small enough, then the temperature drop over the wall thickness is negligibly small and the temperature of the wall 

surface interacting with the fluid flow can be taken to be equal to the temperature of the outer wall surface, usually 

prescribed in the form of a certain law known a priori. However, in some cases the temperature distribution on the 

outer wall surface is not known in advance. Thus, even at small values of the Brun number the conditions at the 

boundary of interaction of the fluid flow with the wall are unknown and can be determined largely by the thermal 

conductivity of the wall in the longitudinal direction. 

The problem of accounting for the thermal conductivity of the wall in the longitudinal direction can be 

solved if we consider the following particular cases. 

I. Heat conduction along the wall is so large that the tempertature drop along the wall is negligibly small 

(much smaller than the temperature drop between the wall surface and the fluid heated). In this case the 

temperature along the wall can be considered constant. 

It is possible to express the temperature drop between the wall surface and the fluid flow from the relation 

P'q = a A t f S  . 

Assuming that a considerable portion of the heat released in the wall is redistributed in the form of a heat 

flux along it, we can calculate the temperature drop along the wall: 

Along t s 
Pr/ = ~s ~ Hbrel~ " 

Then, after rearrangement we have 

ts _ ~.long ~'f b 
A o -  7 Nu. (4) 

The quantity 
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= 7 Pr%e ' {s) 

obtained from Eq. (4), can be called the longitudinal Brun number. The critical (minimum) value of Br l~ can be 

found from the condition 

A0 I~ _.< 0.00,5. (6) 

In this case if the value of Br l~ is smaller than or equal to the critical value, then the temperature of the 

wall in the longitudinal direction can be considered constant. If condition (6) is not fulfilled, the problem must be 

treated as a conjugate one even when Br _< Brmi n. 

2. The longitudinal heat flux in the wall of the heater is negligibly small in comparison with the transverse 

heat flux. 

The relationship between the longitudinal and transverse fluxes can be expressed in the following manner:  

Ats ~ 
oJ~ 2 s - - - s  rib 

r 

Assuming that A: s = Prl/rMc, we obtain t l ~ l ~  = 2sl-lb/(McL ). 

If 

2sFib 
�9 < <  1 , ( 7 )  

McL 

then we can neglect the longitudinal heat flux and assume that for each elementary portion of the heat-evolving 

surface the heat flux transferred to the fluid is equal to the intensity of heat releases on the given portion. This 

simplifies substantially the mathematical formulation of the heat exchange problem in spite of the fact that the 

problem remains conjugate. 

3. The most complicated case is that where neither condition (6) nor (7) is fulfilled. Under  these conditions 

the problem should be considered conjugate and the longitudinal heat flux in the wall should be taken into account 

in its formulation. 

Information on modeling heat exchange apparatuses with internal heat sources, which include induction 

heaters, is extremely scarce [7 ]. 

In inductive heating, the fluid flow generally passes through a system of channels of an induction heater 

in whose walls there are internal heat sources produced by an induced electric flux. Structurally, the presence of 

adjacent channels is rational, since in this case both the inner and outer sides of the wall that divides the adjacent 

channels are a heat exchange surface of the induction heater. 

We can present a mathematical description of heat exchange in such a heater in the form of a system of 

equations that involves: equations of convective heat exchange in the fluid flow in each channel;  equations of heat 

conduction in the walls dividing the flows; conditions of thermal interaction between the fluid flows and the walls. 

It is evident that such a system of equations is very complex, and therefore it is necessary to seek ways of simplifying 

the mathematical description. 

In the first approximation we assume that the temperature drop over the wall thickness of the heater is 

negligibly small, and the transverse heat flux in the wall is incommensurably larger than the longitudinal heat flux, 

i.e., the latter can be neglected (conditions (6) and (7) are satisfied). 

Figure 1 presents schematically two adjacent channels of the induction heater. A system of equations of 

heat exchange in these channels, obtained with account for the assumptions made, is given below: 

Mcdt' = qllqldx + q'llFl'll dx ,  (8) 
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Fig. 1. Schematic of two adjacent channels of an induction heater: I) inner 

wall; II) wall dividing the adjacent channels; III) outer wall. x, coordinate in 

the flow direction (m). 

M c d t "  = - q l l F l l l d x  - q l l l I - I l l l d x ,  (9) 

ql  = a t  ( t l  - t'k'p) , (10) 

q'H = ct'II (t'll -- t'k'p) , (11) 

qI I l  = CtIII ( l I I I  - -  f k ; )  , 
(12) 

ql l  = a l l  ( i l l  -- t ' k ; )  , 
(13) 

q'HH'H + q l l H 1 l  = P H F I I l , m b l l ,  
(14) 

ql = P l b l ,  (15)  

q t l t  = P m  blH- (16) 

In essence, this system describes heat exchange between two conjugate fluxes at whose boundary of 

interaction distributed heat sources operate. Thus, the physical content of the problem differs somewhat from the 

actual one, i.e., there is no description of heat exchange in the walls. However, the given simplifications correspond 

to the adopted assumptions and allow us to obtain an analytically tractable mathematical model of heat exchange 

for two adjacent channels of an induction heater. 

With H ,  a ,  kp, M ,  c, ql ,  qlI1, P t l ,  and b being constant, under the condition kp = kp' = kp, after 

transformation and nondimensionalization the system of equations (8)-(16) is reduced to a system of two equations: 

d20 ' _ k~_ (F2 + F3 + F4), 
d X  2 F I 

(17) 

0 " - -  FI 
kp 

dO' Ft F2 + F3F5 (18) 
+ 0 '  

d X  kp ' 

where 
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F 1 ~ - -  
M c  1 

L n',m, 

1 
- -  . d  t -  - -  

1-l lq  t L  
; F 2 = - - ;  

M c A t  

H l l , m b t l P t i L  . F l l t l q l t l L  . M c  
F 3 = , F 4 = , F 5 = - -  . 

M c A t  M c A t  H'I Ia ' I IL  

l -- tin t -- /in X 
0' = At " 0" - A----7-- ; At = /fin - tin ; X = ~ .  

The solutions of sys tem (17)-(18) have the following form: 

- -  FI (F2 + F 3 + F4) E I X  + 
(19) 

F 1 
0" 5 X 2 (E l F3 F4 ) + E2 = - -  FI ( F  2 + F 3 + F4) + - F 2 -  - X - - k .  ~ E 1 + 

where E l and  E 2 are  integrat ion constants .  

Using the notat ion 

F 1 F  2 + F 3 F  5 
k_p_ = H I  ; F2 + F3 + F4 = H 2  ; _ H3 , 
F 1 kp 

we can represent  Eqs. (19)-(20) more compactly in the form 

' H I H 2  X 2  0 = - + E I X + E 2 ,  

F I F  2 + F 3 F  5 

kp 
(2o) 

(21) 

E~ (22) 0"= Htn22 x2 +(E~-H2) X+~+E 2-H 3. 

Two adjacent  channels  are  just an element of the induction hea t -exchange  appara tus .  Genera l ly ,  several 

such e lements  can be present .  When combining solutions for a pair  of channels  into a genera l  solution for an 

a rb i t r a ry  number  of channels  of an induction heater ,  it is necessary  to construct  a sys tem of equations that repre-  

sents  the condi t ions that  de te rmine  the order  in which the fluid flow passes through the channels .  

As an example ,  we can consider  a twelve-channel  cyl indr ical  induction hea te r  that  was subjected to tests 

(see Fig. 2). The  o rde r  in which the fluid flow traverses the channels  of the hea te r  is ind ica ted  by the figures: 

1 ~ 2 --, 3 ~ 4 -,, 5 - -  6 --,. 7 -,. 8 -,. 9 ~ 10 --,. 11 --- 12. 

In this case six pairs of adjacent  channels  are  formed: 1, 12; 2, 1 l; 3, 10; 4, 9; 5, 8; 6, 7. Moreover, when 

the liquid flow leaves the preceding channel  and enters  the succeeding one, it reverses the direct ion of its motion. 

It is evident  that the t empera ture  of the fluid at the exit from the preceding channel  should be equal to that at the 

ent ry  into the succeeding one. The  combinat ion of these condit ions has the following form: 

0~,x=0 = 0 ;  0 l ,x=l  = 02,x=0;  0 2 . x = l  = 0 3 , x = 0  

0 3 , x = l  = 0 4 , X = 0  ; 04 ,X=I  = 0 5 , x = o  " (95 ,x=l  = O 6 , x = o  " 
(23) 

0 6 , x = l  = 0 7 , x = ~  ; 07,x=o = 0 8 , x : t  ; 08,x=o = 0 9 , x = l  " 

(99.x= 0 =(910,x= I ; 010.x=o = 0 i t . x =  I ; 0 1 1 , x = o  = 0 1 2 . x =  I - 

The beginning of each inner  channel  (i.e., 1-6) is de te rmined  by the coordinate  X = 0 in accordance  with Fig. 1. 

Similar  condi t ions can bc compiled for an a rb i t ra ry  number  of channels .  
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Fig. 2. Schematic of a twelve-channel cylindrical induction heater: 1-12) 

numbers of the channels. 

Simultaneous solution of conditions (23) makes it possible to find integration constants in expressions 

(21)-(22) and thereby determine the dependence of the fluid flow temperature on the coordinate in an arbitrary 

channel of the heater. The distribution of temperatures on the heat-exchange surfaces of the heater can easily be 

found by using Eqs. (10)-(13) simultaneously with (21)-(22). 

Thus, we have formulated and solved analytically the problem of induction heating of a fluid flow in a 

heater with an arbitrary number of adjacent channels under conditions of conjugate heat exchange between the 

fluid flow and the channel walls. The results of the solution can form a basis for rational design of induction heaters 

for fluids and give insight into the kinetics of fluid heating in induction heaters, i.e., heat exchange apparatuses 

with internal heat sources. 

N O T A T I O N  

Br, Brun number ;  ,a, thermal conductivity coefficient; b, wall thickness; l, characteristic dimension 

(equivalent diameter of the channel); Re, Pr, Reynolds and Prandtl numbers; AO, relative temperature drop; E, 

correction factor for the distortion of the temperature profile in the wall (in the case of a linear temperature 

distribution e = 1); A, m, n, coefficients in the similarity equation; P, heat power of the heater; r/, thermal efficiency 

of the heater; a ,  heat-transfer coefficient; At, temperature drop; S, heat-exchange surface of the heater; L, length 

of a heater channel; H, perimeter of a heater channel; Nu, Nusselt number; ~ ,  heat flux; r, number of channels 

in the heater; M, mass flow rate of the fluid; c, heat capacity of the fluid; t, temperature; x, coordinate in the flow 

direction; q, density of the heat flux through the wall surface; kp, coefficient of the distribution of temperature over 

the channel cross section; p, specific volumetric power of the internal heat sources; O, dimensionless temperature. 

Subscripts and superscripts: f, fluid; s, wall; long, longitudinal; ', inner channel; ",  outer channel; I, II, HI, 
numbers of the walls; m, mean; in, initial; fin, final. 
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